太阳成集团-www.tyc234cc|官方网站

您的浏览器版本太低,请使用IE9(或以上)、谷歌、火狐等现代浏览器。360、QQ、搜狗等浏览器请使用极速模式。
学院发表文章

Acidithiobacillus species drive the formation of ferric-silica cemented microstructure: Insights into early hardpan development for mine site rehabilitation

发布日期:2024-04-14浏览次数:信息来源:太阳成集团tyc234cc

Yunjia Liu   Zeqi Wu   Tingrui Zhang   Jiachen Zhao   Chongyang Shen   Huaizhi Tang   Jianying Shang   Yuanfang Huang   Longbin Huang

Abstract

Hardpan-based profiles naturally formed under semi-arid climatic conditions have substantial potential in rehabilitating sulfidic tailings, resulting from their aggregation microstructure regulated by Fe-Si cements. Nevertheless, eco-engineered approaches for accelerating the formation of complex cementation structure remain unclear. The present study aims to investigate the microbial functions of extremophiles on mineral dissolution, oxidation, and aggregation (cementation) through a microcosm experiment containing pyrites and polysilicates, of which are dominant components in typical sulfidic tailings. Microspectroscopic analysis revealed that pyrite was rapidly dissolved and massive microbial corrosion pits were displayed on pyrite surfaces. Synchrotron-based X-ray absorption spectroscopy demonstrated that approximately 30 % pyrites were oxidized to jarosite-like (ca. 14 %) and ferrihydrite-like minerals (ca. 16 %) in talc group, leading to the formation of secondary Fe precipitates. The Si ions co-dissolved from polysilicates may be embedded into secondary Fe precipitates, while these clustered Fe-Si precipitates displayed distinct morphology (e.g., “circular” shaped in the talc group, “fine-grained” shaped in the chlorite group, and “donut” shaped in the muscovite group). Moreover, the precipitates could join together and act as cementing agents aggregating mineral particles together, forming macroaggregates in talc and chlorite groups. The present findings revealed critical microbial functions on accelerating mineral dissolution, oxidation, and aggregation of pyrite and various silicates, which provided the eco-engineered feasibility of hardpan-based technology for mine site rehabilitation.

Keywords

Waste treatment; Mineral transformation; Aggregation structure; Bioweathering; Synchrotron-based XAFS


Acidithiobacillus species drive the formation of ferric-silica cemented microstructure Insights into early hardpan development for mine site rehabilitation.pdf